ASAP Default Hyper-heuristics

During the preparation and testing of the competition software, we developed 8 hyper-heuristics, which are inspired by state-of the-art approaches. However, we make no guarantees about their quality (or lack thereof). They are intended to serve as a starting benchmark to compare the performance of the participants' algorithms. 

The tables below show the results obtained by these 8  default hyper-heuristics on the 10 training instances of the 4 test domains (Table 1: MAX-SAT, Table 2: 1D Bin Packing, Table 3: Personnel Scheduling, and Table 4: Permutation Flow Shop). Each table entry corresponds to the objective function value obtained by each algorithm after a single 10 minutes run on the respective domain instance.  Recall that all domains are minimisation problems, therefore the best results correspond to the smallest values.

Note that the Personnel Scheduling instances are a subset of the instances in the Staff Rostering Benchmark Data Sets, maintained by Timothy Curtois, University of Nottingham, UK.

Please notice that success against these hyper-heuristics will not necessarily translate into success in the competition, as that depends on the quality of the other competitors' entries.  If you are willing to gauge the performance of your algorithm against those of other competitors, please consider sending your results to be included in the Leaderboard.

Table 1: MAX-SAT, objective function values obtained by 8 hyper-heuristics on the 10 training instances, after a 10 minutes run. The best obtained result for each instance is highlighted in bold font.


HH1
HH2
HH3
HH4
HH5
HH6
HH7
HH8
Inst1
47 35 23 38 125 14 51 46
Inst2
35 31 38 51 109 30 37 57
Inst3 32 24 26 44 115 27 29 54
Inst4 19 13 31 15 54 17 18 25
Inst5 11 8 39 32 56 33 10 42
Inst6 25 17 56 46 110 50 23 54
Inst7 7 6 12 12 16 10 6 18
Inst8 6 6 11 12 16 11 7 15
Inst9 9 8 13 17 26 14 10 21
Inst10 213 211 216 235 263 219 215 233
[Top]


Table 2: 1D Bin Packing, objective function values obtained by 8 hyper-heuristics on the 10 training instances, after a 10 minutes run. The best obtained result for each instance is highlighted in bold font.


HH1
HH2
HH3
HH4
HH5
HH6
HH7
HH8
Inst1
0.01738 0.01740 0.00683 0.01179 0.05065 0.01574 0.02195 0.07166
Inst2
0.01643 0.01696 0.00723 0.01174 0.05013 0.01180 0.02114 0.06794
Inst3
0.02339 0.02354 0.02419 0.02353 0.02760 0.02314 0.02422 0.03068
Inst4 0.02477 0.02456 0.02604 0.02460 0.03145 0.02425 0.02553 0.03285
Inst5 0.00628 0.00651 0.00034 0.00457 0.01512 0.00682 0.00688 0.02195
Inst6 0.00428 0.00845 0.00335 0.00365 0.01785 0.00842 0.00897 0.02373
Inst7 0.11477 0.09875 0.01084 0.02209 0.17178 0.04843 0.13877 0.18497
Inst8 0.13643 0.13595 0.01909 0.06375 0.18226 0.08434 0.15052 0.18409
Inst9 0.05505 0.05444 0.05798 0.09188 0.09279 0.06073 0.05549 0.12584
Inst10 0.01236 0.01127 0.01575 0.02671 0.03521 0.01667 0.01497 0.04291
[Top]


Table 3: Personnel Scheduling, objective function values obtained by 8 hyper-heuristics on the 10 training instances, after a 10 minutes run. The best obtained result for each instance is highlighted in bold font.

HH1
HH2
HH3
HH4
HH5
HH6
HH7
HH8
Inst1
3324 3309 3354 3339 3340 8342 3324 3334
Inst2 2240 2280 2485 2218 2260 11673 2135 3983
Inst3 360 340 545 340 380 755 370 315
Inst4 22 18 28 17 21 74 19 21
Inst5 25 23 35 25 22 69 22 27
Inst6 23 26 34 22 22 73 19 26
Inst7 1129 1113 1241 1125 1130 30094 1117 1643
Inst8 2261 2266 2270 2290 2278 46800 2197 4035
Inst9 3238 3173 3252 3236 3276 42151 3166 8074
Inst10 9690 9735 14321 12752 9815 95582 9789 19148
Note: These instances are a subset of the instances in the Staff Rostering Benchmark Data Sets)
[Top]


Table 4Permutation Flow shop, objective function values obtained by 8 hyper-heuristics on the 10 training instances, after a 10 minutes run. The best obtained result for each instance is highlighted in bold font.

HH1
HH2
HH3
HH4
HH5
HH6
HH7
HH8
Inst1
6381 6383 6368 6326 6387 6312 6391 6315
Inst2 6329 6336 6339 6263 6315 6271 6334 6265
Inst3 6404 6404 6398 6362 6407 6344 6404 6351
Inst4 6390 6389 6369 6366 6392 6350 6385 6366
Inst5 6481 6468 6439 6407 6468 6398 6480 6419
Inst6 10547 10549 10544 10503 10549 10500 10542 10522
Inst7 10965 10965 10965 10923 10965 10922 10968 10957
Inst8 26440 26440 26487 26382 26476 26424 26450 26406
Inst9 26984 26958 26998 26864 26974 26896 26928 26939
Inst10 26779 26754 26818 26721 26756 26704 26767 26726

The design principles of some of these hyper-heuristics, can be found in the following article:

E. K. Burke, T. Curtois, M. Hyde, G. Kendall, G. Ochoa, S. Petrovic, J. A. Vazquez-
Rodriguez and M. Gendreau (2010) Iterated Local Search vs. Hyper-heuristics: Towards General-purpose Search Algorithms, IEEE Congress on Evolutionary Computation (CEC 2010), IEEE PRess, pp. 3073-3080.

Also, the hyper-heuristic identified as HH5 corresponds to the ExampleHyperHeuristic1.java discussed in the HyFlex Tutorial.
 [Top]

Last Updated: 25 May 2011, by Gabriela Ochoa